Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy.
نویسندگان
چکیده
Conditionally replicating herpes simplex virus-1 (HSV-1) vectors are promising therapeutic agents for cancer. Insertion of therapeutic transgenes into the viral genome should confer desired anticancer functions in addition to oncolytic activities. Herein, using bacterial artificial chromosome and two recombinase-mediated recombinations, we simultaneously created four "armed" oncolytic HSV-1, designated vHsv-B7.1-Ig, vHsv-interleukin (IL)-12, vHsv-IL-18, and vHsv-null, which express murine soluble B7.1 (B7.1-Ig), murine IL-12, murine IL-18, and no transgene, respectively. These vHsv vectors possess deletions in the gamma34.5 genes and contain the green fluorescent protein gene as a histochemical marker and the immunostimulatory transgene inserted in the deleted ICP6 locus. The vHsv showed similar replicative capabilities in vitro. The in vivo efficacy was tested in A/J mice harboring s.c. tumors of syngeneic and poorly immunogenic Neuro2a neuroblastoma. The triple combination of vHsv-B7.1-Ig, vHsv-IL-12, and vHsv-IL-18 exhibited the highest efficacy among all single vHsv or combinations of two viruses. Combining 1 x 10(5) plaque-forming units each of the three armed viruses showed stronger antitumor activities than any single armed virus at 3 x 10(5) plaque-forming units in inoculated tumors as well as in noninoculated remote tumors. Studies using athymic mice indicated that this enhancement of antitumor efficacy was likely mediated by T-cell immune responses. The combined use of multiple oncolytic HSV-1 armed with different immunostimulatory genes may be a useful strategy for cancer therapy.
منابع مشابه
Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model.
PURPOSE We investigated whether an armed viral platform, where lytic property of a viral infection is coupled to viral-mediated delivery of therapeutic genes, could increase the therapeutic potential of a viral-based therapy. EXPERIMENTAL DESIGN We generated interleukin (IL)-12-expressing oncolytic adenovirus (YKL-IL-12) and IL-12- and B7-1-expressing (YKL-IL12/B7) oncolytic adenovirus. Thera...
متن کاملIn situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity.
In vivo delivery of immunomodulatory genes is a promising strategy for solid tumor vaccination. A drawback is that it necessitates induction of a large effect from transgene expression in a small percentage of tumor cells. Although the B7 family is known to be the most potent of the costimulatory molecules, gene transduction of B7 alone has not been effective in inducing antitumor immunity in n...
متن کاملPreclinical Evaluation of Oncolytic Δγ134.5 Herpes Simplex Virus Expressing Interleukin-12 for Therapy of Breast Cancer Brain Metastases
The metastasis of breast cancer to the brain and central nervous system (CNS) is a problem of increasing importance. As improving treatments continue to extend patient survival, the incidence of CNS metastases from breast cancer is on the rise. New treatments are needed, as current treatments are limited by deleterious side effects and are generally palliative. We have previously described an o...
متن کاملCombining oncolytic HSV-1 with immunogenic cell death-inducing drug mitoxantrone breaks cancer immune tolerance and improves therapeutic efficacy.
Although antitumor activity of herpes simplex virus 1 (HSV-1) ICP0 null oncolytic vectors has been validated in murine breast cancer models, oncolytic virus treatment alone is insufficient to break immune tolerance. Thus, we investigated enhancing efficacy through combination therapy with the immunogenic cell death-inducing chemotherapeutic drug, mitoxantrone. Despite a lack of enhanced cytotox...
متن کاملIL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice
BACKGROUND Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2006